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Concept

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 2 / 34



Setup environment

See
Documentation: https://github.com/DUNE-
DAQ/appfwk/wiki/Compiling-and-running-under-v2.2.0
Tutorial from Carlos Barajas:
https://indico.fnal.gov/event/47545/contributions/207745/attachments
/139624/175288/Minidaq_app_Tutorial_5.pdf

Let’s define basic parameters:
DUNE DAQ version: export VERSION=dunedaq-v2.2.0
Working directory: export MYDIR=dunedaq
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Setup environment

Setup daq-buildtools

$ git clone https://github.com/DUNE-DAQ/daq-buildtools.git
-b $VERSION
$ source daq-buildtools/dbt-setup-env.sh
Expected answer: Added /your/path/to/daq-buildtools/bin to PATH
Added /your/path/to/daq-buildtools/scripts to PATH
DBT setuptools loaded

Setup working directory

$ mkdir $MYDIR
$ cd $MYDIR
$ dbt-create.sh $VERSION
This may take a couple of minutes and will create your working area in the
$MYDIR location.
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Setup environment

DUNE DAQ consists of several mod-
ules. The most important one is
appfwk that provides the basic func-
tionalities.
The data selection is based on
two modules: DAQDuneTrigger and
DuneTriggerAlgs.
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Setup environment

The source code for the modules are located in sourcecode:
$ cd sourcecode
Now we use a couple of modules:
$ MODULES="appfwk DAQDuneTriggers DuneTriggerAlgs cmdlib ers
filecmd listrev restcmd"
Let’s check out each of these. Please note that $VERSION is checked out
only when it exists, and the DS repos are not part of DUNE-DAQ yet.
$ for MODULE in $MODULES
> do; git clone https://github.com/DUNE-DAQ/$MODULE.git
> [[ -d $MODULE ]] || git clone
https://github.com/thiagojcb/$MODULE.git
> cd $MODULE
> git fetch;git checkout $VERSION;git checkout he;git checkout moo
> cd ..; done
You should now have a complete working environment!
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Example

In this tutorial, we will use
$MYDIR/sourcecode/DAQDuneTrigger/Plugins/
TriggerPrimitiveFromFile.cpp as an example.
It simply takes a (shorter) waveform from a csv file indicated by the user,
formatted as follows:
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moo

We want our module and our plugins to be configurable. This can be
done using either python or jsonnet using moo. There are three different
moo-based file:

the plugin schema
the plugin make
the app / command facility

Documentation:
https://brettviren.github.io/moo/moo.html
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Schema file

schema/test_schema.jsonnet

local types = {
pathname : s.string("Path", "path",

doc="File path, file name"),

conf: s.record("Conf", [
s.field("filename", self.pathname,

"/tmp/example.csv",
doc="File name for trigger primitives"),

], doc="TriggerPrimitiveFromFile configuration"),
};
moo.oschema.sort_select(types, ns)
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Calling schema objects

plugins/test_plugin.cpp
...
void TriggerPrimitiveFromFile::do_configure(
const nlohmann::json& config /*args*/)
{
auto params = config.get<triggerprimitivefromfile::Conf>();
filename = params.filename;

}
...
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Compiling the schema

in $MYDIR/sourcecode/DAQDuneTriggers

Should be done in build process at some point.
$ moo -g ’/lang:ocpp.jsonnet’ -M schema -A
path=dunedaq.DAQDuneTrigger.triggerprimitivefromfile -A
ctxpath=dunedaq -A
os=DAQDuneTriggers-TriggerPrimitiveFromFile-schema.jsonnet render
omodel.jsonnet onljs.hpp.j2
$ moo -g ’/lang:ocpp.jsonnet’ -M schema -A
path=dunedaq.DAQDuneTrigger.triggerprimitivefromfile -A
ctxpath=dunedaq -A
os=DAQDuneTriggers-TriggerPrimitiveFromFile-schema.jsonnet render
omodel.jsonnet ostructs.hpp.j2
Include the Nljs.hpp file in the plugin source code!
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Create the make

plugins/test_make.jsonnet

{
conf(filename) :: {

filename: filename,
},

}
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Creating the app
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Creating the app

Includes
local moo = import "moo.jsonnet";
local cmd = import "appfwk-cmd-make.jsonnet";
local TPsGenerator = import "test_make.jsonnet";
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Creating the app

Queues
local queues = {

TPsQueue: cmd.qspec("TPsQueue",
"FollyMPMCQueue",
1000),

TAsQueue: cmd.qspec("TAsQueue",
"FollyMPMCQueue",
100),

TCsQueue: cmd.qspec("TCsQueue",
"FollyMPMCQueue",
10),

}
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Creating the app

Plugins
...

TPsGenerator: cmd.mspec("TPsGenerator2",
"TriggerPrimitiveFromFile",
[cmd.qinfo("output",

"TPsQueue",
cmd.qdir.output)]),

TAsGenerator: cmd.mspec("TAsGenerator",
"DAQTriggerActivityMaker",
[cmd.qinfo("input",

"TPsQueue",
cmd.qdir.input),

cmd.qinfo("output",
"TAsQueue",
cmd.qdir.output)]),
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Creating the app

Configuration
[

cmd.init([ queues.TPsQueue,
queues.TAsQueue,
queues.TCsQueue],

[ modules.TPsGenerator,
modules.TAsGenerator,
modules.TCsGenerator])

{ waitms: 1000},
cmd.start(40){ waitms: 1000},
cmd.stop(){ waitms: 1000},

...
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Creating the app

Configuration
...

cmd.conf(
[cmd.mcmd("TPsGenerator3",

TPsGenerator.conf("/tmp/csv_file.csv")),
cmd.mcmd("DAQTriggerActivityMaker"),
cmd.mcmd("DAQTriggerCandidateMaker"),)]

]
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Creating the app

Compiling the command facility
Let’s compile the app to provide a command facility
$ moo compile test_app.jsonnet > test_compiled.json
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Creating the app

Compiling the module
Each module has a CMakeLists.txt file for build instructions.

cmake_minimum_required(VERSION 3.12)
project(DAQDuneTriggers VERSION 2.0.0)
find_package(daq-cmake REQUIRED )
daq_setup_environment()
find_package(appfwk REQUIRED)
find_package(DuneTriggerAlgs REQUIRED)
daq_add_plugin(TriggerPrimitiveRadiological \

duneDAQModule LINK_LIBRARIES appfwk::appfwk)
daq_add_plugin(TriggerPrimitiveFromFile \

duneDAQModule SCHEMA LINK_LIBRARIES appfwk::appfwk)
...
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Building DUNE DAQ
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Building DUNE DAQ app

Let‘s build the DAQ App! $ dbt-setup-build-environment
$ dbt-build.sh –install
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Running!

Let‘s run!
$ dbt-setup-run-environment
$ daq_application -c test_compiled.json
Now the commands init | conf | start | stop should appear. Let’s
run the commands in this order to test the commands!
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Plugins

Introduction to the algorithms/plugins of DAQDuneTriggers and
DuneTriggerAlgs.
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What each module is in charge of?

DuneTriggerAlgs
Define trigger “objects”

Trigger Primitive
Trigger Activity
Trigger Candidate
Trigger Decision (not used for now)

Define algorithms
Maker (finder) for each of the object

DAQDuneTriggers
Each algorithm is it’s own DAQProcess
Defines queue, etc
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Data structure (TP, TA, TC) on DuneTriggerAlgs
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Intermission (I) - Background info

Module is a skeleton/back bone, built with a SNB approach in mind.

Brett’s diagram
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Intermission (II) - Basics on SNB triggering

TAs are formed by clustering TPs in time and space (channel).

At least two parameters needed:
Channel tolerance between TPs
Time tolerance between TPs

Additionally we also have number of TPs in a TA as a selection criteria.
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Intermission (III) - Basics on SNB triggering

TCs are formed by simply counting TAs in a time window.
At least two parameters needed:

Size of the time window
Number of TAs in the time window

→ Example of a simple TA and TC finder:

DuneTriggerAlgs/dune-trigger-algs/Supernova/TriggerActivityMaker_Supernova.*
DuneTriggerAlgs/dune-trigger-algs/Supernova/TriggerCandidateMaker_Supernova.*

The finders has a pure virtual function, operator(), where the algorithmic
part happens
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Appfwk interface (DAQDuneTriggers)

Where the DAQProcess are implemented and calling these operator()
functions
Example class (DAQDuneTriggers/plugins/DAQTriggerActivityMaker.cpp ):

Fills and consumes queues of trigger objects (listrev based)
Holds and parses all configurations of the algorithms previously
defined.

For example, in case of Supernova TC maker, we might change the
threshold in number of TAs at which the trigger is emitted
Working on going on this front for new appfwk version
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Example: TC (I)

operator() call at
DAQDuneTriggers/plugins/DAQTriggerCandidateMaker.cpp
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Example: TC (II)

operator() definition at
DuneTriggerAlgs/dune-trigger-algs/Supernova/TriggerCandidateMaker_Supernova.hh
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Example: TC (III)

operator() description at
DuneTriggerAlgs/dune-trigger-algs/Supernova/TriggerCandidateMaker_Supernova.cc
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What to do if you want to use this module?

You become a collaborator on the module development
We want to agree on a minimum version so it can be incorporated on
DUNE-DAQ repository, and update conventions.

You need to write your version for all chain (TP→TA→TC):
TP: Create your own random generator or csv file
TA: Create your maker/finder, if current not suitable (probably isn’t)
TC: Create your triggering condition
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